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The robustness of controlling complex networks is significant in network science. In this paper, we focus on
evaluating and analyzing the robustness of controlling edge dynamics in complex networks against node failure.
Using three categories of all nodes to quantify the robustness, we find that the percentages of the three types
of nodes are mainly related to the degree distribution of networks. The simulation results of model networks
and analytic calculations show that the sparse inhomogeneous networks, which emerge in many real complex
networks, have strong control robustness from the point of the number of ordinary nodes, but the strong positive
correlation between in and out degrees reduces the control robustness. Evaluation of real-world networks indicates
that most of them have few or no critical nodes, that is, they do not need to increase driver nodes to maintain
control for most of node failures. Then an adding circuit-link strategy is proposed to optimize the robustness of
edge controllability.
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I. INTRODUCTION

Complex networks, composed of interacting individual
units, universally exist in most technological, physical, so-
cial, and biological systems [1–4]. How to control complex
networks is a fundamental issue in contemporary network
science [5–7]. The key issue addressed by the control theories
is, with a suitable choice of inputs, to steer the network
system to any desired final state in finite time [8,9]. Liu
et al. [10] made a breakthrough by developing a structural
control theory for nodal dynamics of complex networks and
offered efficient tools based on the maximum matching to
determine the minimum number of driver nodes. Then Nepusz
and Vicsek [11] analyzed edge dynamics in complex networks
and found that the controllability property of edge dynamics
significantly differs from that of nodal dynamics. Much interest
has been stimulated toward exploring the controllability
properties of complex networks [12–17].

The robustness of controlling complex networks, which
represents the property of being strong and healthy in control,
is significant in network science. Generally, uncertain fail-
ures and perturbations are inevitable in real-world complex
networks. The network structure always confronts random
failures and intentional attacks. So the robustness [18], the
ability to withstand failures and perturbations, has been one
of the most active topics in network science. In partic-
ular, robustness is crucial for the infrastructure networks
such as power grids [19], the Internet [20], transportation
networks [21], etc. Evidence has demonstrated that such
networks can be affected by failures and attacks that emerge
locally. Liu et al. [10] analyzed the robustness of the nodal
controllability in networks under unavoidable node (edge)
failure. They classified nodes (edges) into three categories:
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critical, redundant, and ordinary. They found that most nodes
(edges) are ordinary in real-world networks, and proved that
the content of cores and leaves in a network is the key factor
determining the proportion of three node (edge) categories.
The robustness of controlling edge dynamics of networks
is another crucial issue. Nepusz and Vicsek [11] similarly
classified edges into three categories. They found that most
real-world networks have strong robustness of control against
edge failure, and showed that the category of an edge can be
determined by its local information, i.e., the in and out degrees
of its two endpoints.

Despite the significant findings, evaluating and analyzing
the robustness of edge controllability of complex networks
against node failure are still lacking. In this paper, we focus
on this issue, which could help deepen our understanding
of the robustness of controlling complex networks against
uncertain failures and perturbations. In a way similar to that
in Refs. [10,11], each node is classified by the change in the
number of driver nodes when the node and its links are removed
from networks. To be specific, for a given network, the number
of driver nodes is denoted by ND. After a node and its links are
removed, the number of driver nodes in the remainder network
is denoted by N ′

D. Nodes can be classified into three categories:
critical, redundant, and ordinary. The removal of a critical node
increases the number of driver nodes required to maintain full
controllability, i.e., N ′

D > ND. Conversely, the removal of a
redundant node decreases the number of driver nodes, i.e.,
N ′

D < ND. The rest nodes are ordinary since removing them
does not affect the number of driver nodes, i.e., N ′

D = ND. For
instance, in Fig. 1, node a is redundant, node b is critical, and
the rest of the nodes are ordinary.

This classification leads to the quantitative analysis of the
robustness of edge controllability in complex networks against
node failure. We find that, unlike that of the robustness of
controlling node dynamics, the percentages of the three node
categories are mainly related to the degree distribution of the
network. The simulation and theoretical analysis for model
networks show that sparse inhomogeneous networks have
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FIG. 1. Categories of nodes in a network. (a) A network with eight nodes that can be control via two driver nodes (ND = 2). Node a is
redundant, node b is critical, and the rest of the nodes are ordinary. (b) The removal of critical node b increases the number of driver nodes
(N ′

D = 3). (c) The removal of redundant node a decreases the number of driver nodes (N ′
D = 1). (d) The removal of ordinary node c does not

affect the number of driver nodes (N ′
D = 2).

strong control robustness, but the strong positive correlation
between in and out degrees reduces the control robustness.
Evaluation of real-world networks indicates that most of them,
particularly the transcriptional regulatory networks, have few
or no critical nodes, i.e., they do not need to increase driver
nodes to maintain control for most of node failures. Finally,
an adding circuit-link strategy is proposed to optimize the
robustness of controlling edge dynamics in any network.

II. NODE CATEGORY

A. Switchboard dynamics

The switchboard dynamics was proposed in Ref. [11] to
characterize a dynamical process on the edges of a network
G(V,E). Specifically, each state variable corresponds to an
edge of the network. The state variables of the outgoing
edges of a node can be influenced by the state variables
of the incoming edges of the node, the damping terms of
the outgoing edges themselves, and the external inputs. The
switchboard dynamics provides a simplified representation of
the underlying dynamic processes in many real networks and
gives rise to several conclusions of the structural controllability
of edge dynamics that remarkably differ from nodal dynamics.
The key result is that the minimum set of driver nodes,
which is required to maintain structural controllability of the
switchboard dynamics on a network, can be determined by
selecting the divergent nodes (k+

v > k−
v ) and one arbitrary node

from each balanced component (k+
v = k−

v > 0 for all nodes in
a connected component).

The switchboard dynamics is suitable for modeling
networks where nodes are active components with information
processing capabilities. We focus on the robustness of edge
controllability under unavoidable node failure. For instance,
consider the transport network where a node (i.e., a transfer
station) constantly processes the passengers and goods
received from its upstream neighbors and transfers them to the
downstream neighbors. The passengers and goods received
and passed by a node can then be represented by the state
variables on its incoming and outgoing edges. A paralyzed
transfer station, which corresponds to a removed node, will
influence the transport of the passengers and goods in its

upstream and downstream stations. Technological networks
also be suitable candidates. Consider an internet network with
computers and routers, where the edges represent physical
connections. The amount of packet flow along a connection in
a given direction can then be represented by the state variables.
Each node is a router and the switching matrix may then
represent a routing mechanism that allows packets to reach
their destination while avoiding congestion. The failure of a
router will influence the transport of packets in the network.

B. Identifying node category

In general, the balanced component, which is infrequent
in directed networks, has little influence to the number ND

of driver node [11]. We thus neglect the possible presence
of balanced components. Then the classification (driver or
nondriver) of a node depends solely on its local information,
i.e., the in and out degrees of the node. A node v is called
weakly divergent if its out degree is one larger than its in
degree, i.e., k+

v = k−
v + 1, and is balanced if it has the same in

and out degrees, i.e., k+
v = k−

v . If a weakly divergent node
appears in the upstream neighbors of the removed node,
the weakly divergent node will turn into a nondriver one.
Conversely, if a balanced node appears in the downstream
neighbors of the removed node, the balanced node will turn
into a driver one. Note that N ′

D will drop an additional one if the
removed node is divergent itself. We can therefore distinguish
three cases:

(1) A divergent node v is critical if the number of balanced
nodes NB

v in its downstream neighbors and the number of
weakly divergent nodes NW

v in its upstream neighbors satisfy
NB

v > NW
v + 1. A nondivergent node v is critical if NB

v > NW
v .

(2) A divergent node v is redundant if the number of bal-
anced nodes NB

v in its downstream neighbors and the number
of weakly divergent nodes NW

v in its upstream neighbors
satisfy NB

v � NW
v . A nondivergent node v is redundant if

NB
v < NW

v .
(3) In all other cases, the node is ordinary.
Note that the upstream and downstream neighbors of a

node do not contain the node itself when a loop exists in this
node.
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III. ROBUSTNESS OF CONTROL

Three categories of all nodes could quantify the robustness
of edge controllability against node failure. A network with
more ordinary nodes has stronger control robustness. In this
section, we will analyze the factors that mainly determine
the proportion of three node categories in a network. The
numerical simulations and theoretical analysis will be per-
formed on the model networks including Erdős-Rényi (ER)
random network [22], exponential (EX) network and scale-free
(SF) network [23], and real-world networks (the detailed
information of real-world networks is shown in Table I).

A. Model networks

A model network with N nodes is structured by the same
given in- and out-degree distributions (Poisson distribution,
exponent distribution, or power-law distribution), i.e., P in

k =
P out

k = Pk . One can obtain the degree sequence by Pk , where
the in- and out-degree sequences are denoted by Kin =
{k−

1 ,k−
2 , . . . ,k−

N } and Kout = {k+
1 ,k+

2 , . . . ,k+
N }, respectively, for

convenience of discussions. Note that the in-degree sequence
is the same as the out-degree sequence, i.e., k−

i = k+
i (i =

1,2, . . . ,N ). The directed network starts from N isolated
nodes. Each node is randomly assigned in degree k−

i and out

degree k+
j from in- and out-degree sequences, respectively.

Then two nodes u with k−
u > 0 and node v with k+

v > 0 are
randomly selected and connected with direction from node
v to u. Then the in degree of node u turns into k−

u − 1 and
the out degree of node v turns into k+

v − 1. This process is
repeated until all nodes satisfy the given in and out degrees.
Note that the multiple edges in the generated network will be
disposed by edges exchanging, i.e., turning edges euv and ekl to
edges eul and ekv if there exist multiple edges euv , where k �= u

and l �= v.

B. Robustness of control in model networks

We will analyze which factor will mainly determine the
proportion of three node categories in a network. For this,
we recall the density of critical, redundant, and ordinary
nodes denoted by ncrit = Ncrit/N, nred = Nred/N , and nord =
Nord/N , respectively. In Fig. 2, we show their average degree
〈k〉 dependence for ER network and EX network and scale-free
exponent γ dependence for SF network.

The simulation and analysis results for ER network with
different average degrees 〈k〉 are shown in Fig. 2(a). One can
see that at low average degrees, the network is dominated by
ordinary nodes. The reason is that abundant isolated nodes are
existing in the network. Also, the removal of isolated nodes
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FIG. 2. Fraction of nodes. Fraction of critical (triangle), redundant (square), and ordinary (circle) nodes in ER network (a) and EX network
(b) as the function of the average degree 〈k〉, and in SF network [(c), (d), and (e)] as the function of the scale-free exponent γ and the exponential
cutoff parameter κ . All the simulation results are obtained by averaging over 20 independent network realizations.
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has no effect on ND. As the network grows, the fraction of
redundant nodes increases rapidly. In this range, there are
many small disconnected components containing two nodes
and one edge only in the network. For these components, both
nodes are redundant since the removal of one of them can
reduce ND. For EX network in Fig. 2(b), the trends of the
curves are very similar to those provided from ER network.
But the fraction of critical nodes is smaller, counterbalanced
by a greater proportion of ordinary nodes.

Figures 2(c), 2(d), and 2(e) show simulation and analysis
results for SF network with different scale-free exponent
γ and exponential cutoff parameter κ . One can see that
the SF network is dominated by critical nodes for large γ .
Note that the average degree depends on both γ and κ as
〈k〉 = Liγ−1(e−1/κ )/Liγ (e−1/κ ), where 〈k〉 increases with the
increase of κ , while it decreases with the increase of γ .
When γ > 3, nodes with only one incoming edge and only
one outgoing edge appear with very high probability. So the
removal of a node may converts its downstream node to a driver
node with one outgoing edge and no incoming edges. Another
interesting phenomenon is that the fraction of ordinary nodes
shows a distinct peak for a specific value of γ . Both the location
and the height of the peak depend on κ , and larger value of κ

move the peak to the direction where γ increases.
The simulation and analysis results show that the sparse

and inhomogeneous (γ < 2) networks have strong control
robustness from the point of the number of ordinary nodes.
However, the dense inhomogeneous networks have strong
control robustness against edge failure [11]. The main reason
for different results is that the classification of node and edge is
different. Specifically, the classification of a node depends on
the changes of its upstream and downstream neighbors when
the node and its links are removed, while the classification
of an edge depends solely on the in and out degrees of its
endpoints. The sparse network contains abundant isolated
nodes and disconnected components containing two nodes
and one edge. The removal of isolated nodes has no effect
on ND, while the only edge in each component is redundant
by the definition since its removal reduces ND. So the sparse
network is dominated by ordinary nodes, but has a relatively
small percentage of ordinary edges. Conversely, the dense
network is dominated by ordinary edges since it contains
few balanced and weakly divergent nodes [11]. Meanwhile,
the dense network has more redundant nodes than ordinary
nodes since the removal of a divergent node itself can reduce
ND. Furthermore, the homogeneous network contains many
balanced nodes, and the remove of any one incoming edge
of the balanced node can increase ND. Thus, compared with
the homogeneous network, the inhomogeneous network has
stronger control robustness from the point of the number of
ordinary nodes and ordinary edges.

C. Robustness of control in real-world networks

To analyze the robustness of edge controllability under
unavoidable node failure in real-world networks, we give the
fraction of critical, redundant, and ordinary nodes in each
real-world network. As shown in Fig. 3(a), most networks
have few or no critical nodes, meaning that they do not need
to increase driver nodes to maintain control for most of node

failures. A notable finding is that the fraction of redundant
nodes is significantly higher than that of critical nodes. The
reason is that a removed node may be a driver node itself,
which increases the probability of the redundant nodes. This
phenomenon demonstrates that most real-world networks are
dominated by ordinary and redundant nodes.

Next we focus on the dependence of the fraction of critical
and ordinary nodes in real-world networks. As shown in
Fig. 3(b), ncrit and nord of real-world networks with different
〈k〉 indeed disperse in two relatively small regions, where the
curves in two regions are analytical results of the fraction of
critical and ordinary nodes in EX network, respectively. The
dispersion of ncrit and nord in two regions is due to the influence
from the network topology, or from the degree distribution. So
we apply a degree-preserving randomization [24], which keeps
the in and out degrees of each node unchanged but reconnects
the nodes randomly. As shown in Fig. 3(c), this procedure does
not alter the number of critical and ordinary nodes significantly.
In conclusion, we find that the control robustness is, to a great
extent, encoded by the degree distribution of network. Note
that we just show the results of critical and ordinary nodes
since ncrit + nord + nred = 1.

D. Disturbance strength

The removal of a node may disturb the number ND of driver
nodes required to maintain full controllability of the edge
dynamics in networks. We use the difference δ = |ND − N ′

D|
to quantify the disturbance strength that a removed node
gives rise to. The densities of critical and redundant nodes
with disturbance strength δ are denoted by nδ

crit = Nδ
crit/N

and nδ
red = Nδ

red/N , respectively. Then the average disturbance
strength δ̄ = ∑N

i=1(δnδ
crit + δnδ

red) is used to quantify the
fragility of a network; i.e., the controllability of a network
with larger δ̄ is easier to be disturbed by node failure. In
Figs. 4(a)–4(i), we show their average degree 〈k〉 dependence
for ER and EX networks and scale-free exponent γ dependence
for the SF network.

As shown in Figs. 4(a)–4(f), a significant result is that the
critical and redundant nodes with δ = 1 play a primary role,
and the nodes with stronger disturbance strength have less
probability of existence. This indicates that the disturbance
strength of most nodes is not huge, and the number of
nodes with stronger disturbance strength is small in networks.
Another interesting phenomenon is that, in Fig. 4(c), a
polarization appears between the critical nodes with δ = 1
and other critical nodes in the SF network. The reason is that,
in the SF network, the nodes with only one incoming edge
and only one outgoing edge appear with very high probability
when γ > 3. So the disturbance strength of most nodes is
δ = 1. As shown in Figs. 4(g)–4(i), the sparse inhomogeneous
networks have lower δ̄. The simulation results reconfirm
that the sparse inhomogeneous networks have strong control
robustness against node failure.

Furthermore, to analyze the correlation between the distur-
bance strength of nodes and their degrees, the average degree
of critical nodes with the same disturbance strengths δ is
defined as 〈k〉δcrit, and 〈k〉δred for redundant nodes is defined
similarly. In Figs. 4(j)–4(l), we show their δ dependence
for model networks. One can see that, for all the model
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FIG. 3. Real-world networks. (a) Fraction of critical, ordinary, and redundant nodes in real-world networks. Numbers refer to the network
indices in Table I. (b) Fraction of critical and ordinary nodes of real-world networks as the function of the average degree 〈k〉. The curves are
analytical results of the fraction of critical (dashed red line) and ordinary (solid green line) nodes in EX network. (c) Number of critical and
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networks, the obviously positive correlations exist between
〈k〉δcrit and δ and between 〈k〉δred and δ. The simulation
results indicate that the hubs tend to have greater disturbance
strength.

E. Analytical results

For model networks, the way of identifying node category
can be used to derive analytical formulas for the expected
fraction of three node categories. To be specific, the category
of a node is determined by the in and out degrees of itself, the
number of weakly divergent nodes in its upstream neighbors,

and the number of balanced nodes in its downstream neighbors.
By enumerating all possible combinations that satisfied the
conditions of critical, redundant, or ordinary nodes, we can
offer the analytical formulas of their expected fractions. Note
that the analytical results are offered by assuming that the in
and out degrees of each node are uncorrelated in the model
networks. The probability of finding a weakly divergent node
is given by Pd = ∑∞

k=0 PkP(k+1), and the probability of finding
a balanced node is given by Pb = ∑∞

k=1 PkPk . By neglecting
the possible existence of balanced components, the expected
fraction of critical nodes can be described by

ncrit =
∞∑

k−=0

∞∑
k+=k−+1

Pk−Pk+

⎡
⎣

k−∑
i=0

Ci
k−P i

d (1 − Pd )k
−−i

⎛
⎝

k+∑
j=i+2

C
j

k+P
j

b (1 − Pb)k
+−j

⎞
⎠

⎤
⎦

+
∞∑

k−=k+=1

Pk−Pk+

⎡
⎣

k−−1∑
i=0

Ci
k−P i

d (1 − Pd )k
−−i

⎛
⎝

k+∑
j=i+1

C
j

k+P
j

b (1 − Pb)k
+−j

⎞
⎠

⎤
⎦

+
∞∑

k+=1

∞∑
k−=k++1

Pk−Pk+

⎡
⎣

k+∑
i=1

Ci
k+P i

b (1 − Pb)k
+−i

⎛
⎝

i−1∑
j=0

C
j

k−P
j

d (1 − Pd )k
−−j

⎞
⎠

⎤
⎦, (1)
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where the first line is the case of divergent nodes and the rest of the lines are the cases of nondivergent nodes. Note that the sum
from j = i + 2 to j = k+ is 0 when i + 2 > k+ in the first line of the above equation. In a similar way, the expected fraction of
redundant nodes is given by

nred =
∞∑
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⎣
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⎛
⎝
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k−=k+=1

Pk−Pk+

⎡
⎣

k+−1∑
i=0

Ci
k+P i

b (1 − Pb)k
+−i

⎛
⎝

k−∑
j=i+1

C
j

k−P
j

d (1 − Pd )k
−−j

⎞
⎠

⎤
⎦

+
∞∑

k+=0

∞∑
k−=k++1

Pk−Pk+

⎡
⎣

k+∑
i=0

Ci
k+P i

b (1 − Pb)k
+−i

⎛
⎝

k−∑
j=i+1

C
j

k−P
j

d (1 − Pd )k
−−j

⎞
⎠

⎤
⎦. (2)

In all other cases, the node is ordinary. So the expected fraction of ordinary nodes is described by

nord = 1 − ncrit − nred. (3)

For model networks, the expected fraction of critical or redundant nodes with different disturbance strengths can be described
by analytical formulas. To be specific, the disturbance strength of a node is determined by the in and out degrees of itself, the
number of weakly divergent nodes in its upstream neighbors, and the number of balanced nodes in its downstream neighbors.
By enumerating all possible combinations, we can offer analytical formulas for the expected fraction of the critical nodes with
disturbance strength δ, that is

nδ
crit =

∞∑
k−=0

∞∑
k+=k−+1

Pk−Pk+

⎡
⎣

k−∑
i=0

Ci
k−P i

d (1 − Pd )k
−−iCi+δ+1

k+ P i+δ+1
b (1 − Pb)k

+−i−δ−1

⎤
⎦

+
∞∑

k−=k+=δ

Pk−Pk+

⎡
⎣

k−−δ∑
i=0

Ci
k−P i

d (1 − Pd )k
−−iCi+δ

k+ P i+δ
b (1 − Pb)k

+−i−δ

⎤
⎦

+
∞∑

k+=δ

∞∑
k−=k++1

Pk−Pk+

⎡
⎣

k+∑
i=δ

Ci
k+P i

b (1 − Pb)k
+−iCi−δ

k− P i−δ
d (1 − Pd )k

−−i+δ

⎤
⎦. (4)

Note that Ci+δ+1
k+ = 0 when i + δ + 1 > k+ in the first line of the above equation. In a similar way, the expected fraction of the

redundant nodes with disturbance strength δ is given by

nδ
red =

∞∑
k−=δ−1

∞∑
k+=k−+1

Pk−Pk+

⎡
⎣

k−∑
i=δ−1

Ci
k−P i

d (1 − Pd )k
−−iCi−δ+1

k+ P i−δ+1
b (1 − Pb)k

+−i+δ−1

⎤
⎦

+
∞∑

k=δ

Pk−Pk+

⎡
⎣

k+−δ∑
i=0

Ci
k+P i

b (1 − Pb)k
+−iCi+δ

k− P i+δ
d (1 − Pd )k

−−i−δ

⎤
⎦

+
∞∑

k+=0

∞∑
k−=k++δ

Pk−Pk+

⎡
⎣

k+∑
i=0

Ci
k+P i

b (1 − Pb)k
+−iCi+δ

k− P i+δ
d (1 − Pd )k

−−i−δ

⎤
⎦. (5)

By inserting the degree distribution of different model
networks into the general formulas, analytical results of the
nodes with different categories and disturbance strength can
be derived. Detailed analytical results are presented below.

For an ER network, obviously, the in and out degrees follow
a Poisson distribution, that is

P (k+
v = k) = P (k−

v = k) = 〈k〉ke−〈k〉

k!
. (6)

By substituting the Poisson distribution into the probability
formula of the weakly divergent node, we obtain

Pd =
∞∑

k=0

〈k〉ke−〈k〉

k!

〈k〉k+1e−〈k〉

(k + 1)!
= I1(2〈k〉)e−2〈k〉, (7)
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where Ia(x) is the modified Bessel function. Similarly, the
probability of the balanced node is given by

Pb =
∞∑

k=1

〈k〉ke−〈k〉

k!

〈k〉ke−〈k〉

k!
= I0(2〈k〉)e−2〈k〉 − e−2〈k〉. (8)

For EX network, obviously, the in and out degrees follow
an exponential distribution, that is

P (k+
v = k) = P (k−

v = k) = Ce−k/κ , (9)

where C = 1 − e−1/κ and κ = 1/log 1+〈k〉
〈k〉 . By substituting the

exponential distribution into the probability formula of the
weakly divergent node, we obtain

Pd =
∞∑

k=0

Ce−k/κCe−(k+1)/κ = 〈k〉
(〈k〉 + 1)(2〈k〉 + 1)

. (10)

Similarly, the probability of the balanced node is given by

Pb =
∞∑

k=1

Ce−k/κCe−k/κ

= 〈k〉2

(〈k〉 + 1)3 + 〈k〉(〈k〉 + 1)2
. (11)

For the SF network, obviously, the in and out degrees
follow a power-law distribution with scaling exponent γ and
exponential cutoff parameter κ , that is,

P (k+
v = k) = P (k−

v = k) = Ck−γ e−k/κ , (12)

where C = 1/Liγ (e−1/κ ), 〈k〉 = CLiγ−1(e−1/κ ), P0 = 0, and
Lis(z) is the polylogarithm function. By substituting the
power-law distribution into the probability formula of the
weakly divergent node, we obtain

Pd =
∞∑

k=1

Ck−γ e−k/κC(k + 1)−γ e−(k+1)/κ

= e−1/κ

Liγ (e−1/κ )2

∞∑
k=1

e−2k/κ

(k2 + k)γ
. (13)

When κ → ∞, the exponential cutoff vanishes and the
polylogarithm function reduces to the Riemann ζ function
ζ (s). Thus, Pd becomes

Pd = 1

ζ (γ )2

∞∑
k=1

1

(k2 + k)γ
. (14)

Similarly, the probability of the balanced node is given by

Pb =
∞∑

k=1

Ck−γ e−k/κCk−γ e−k/κ = Li2γ (e−2/κ )

Liγ (e−1/κ )2
. (15)

When κ → ∞, Pb becomes

Pb = ζ (2γ )

ζ (γ )2
. (16)

IV. DEGREE CORRELATIONS

We assume that the in and out degrees of nodes have
no correlation in the analysis, which is true for all of
the model networks studied above. However, the in- and

out-degree correlation exists in real-world networks [25,26].
It is unreasonable to assume that such correlation has no
influence on the robustness of control. Thus, we use the
Pearson correlation coefficient [27] to quantify the in- and
out-degree correlation of a network and to analyze the effect of
the correlation on the robustness of control.

A. In- and out-degree correlation

The Pearson correlation coefficient, which is used to
quantify the in- and out-degree correlation of a network, is
described by

R =
∑N

i=1(k−
i − k−)(k+

i − k+)√∑N
i=1(k−

i − k−)2
√∑N

i=1(k+
i − k+)2

, (17)

where k−
i and k+

i are the in degree and out degree of node i,
respectively. k− = (1/N)

∑N
i=1 k−

i and k+ = (1/N)
∑N

i=1 k+
i

are the average in degree and average out degree, and R ∈
[−1,1].

For a model network generated by the same in-degree
sequence Kin = {k−

1 ,k−
2 , . . . ,k−

N } and out-degree sequence
Kout = {k+

1 ,k+
2 , . . . ,k+

N } in ascending order, the adjusting
strategy of its in- and out-degree correlation consists three
steps. First, we assign each isolated node with in degree k−

i

and out degree k+
N−i+1. In this case, the generated network

has the strongest negative in- and out-degree correlation; i.e.,
a node with smaller in degree (out degree) has bigger out
degree (in degree). Note that the correlation coefficient R

may not reach −1 for some in- and out-degree sequences.
Second, we increase the value of R by randomly exchanging
the out degrees of nodes. This process will be continued until
R ≈ 0; i.e., the generated network has no in- and out-degree
correlation. Finally, we increase the value of R by assigning
more nodes with the same in and out degrees. This process
will be continued until R = 1, i.e., the generated network, in
which all nodes are balanced, has the strongest positive in- and
out-degree correlation.

B. The effect of in- and out-degree correlation

We perform simulations on ER, EX, and SF networks with
varied correlation coefficient R. The simulation results in
Fig. 5 clearly show a general trend: The excessive increase
of the positive correlation weakens the robustness of control.
An extreme case is that a network has the strongest positive
correlation between in- and out-degrees (R = 1), i.e., all nodes
of the network are balanced. In this case, each node with
k+ > 0 is critical since there are no weakly divergent nodes
in its upstream neighbors while all nodes in its downstream
neighbors are balanced. Meanwhile, the disturbance strength
of a critical node equals its out degree k+.

One key result from Ref. [11] is that positively correlated
in and out degrees enhance the controllability of the edge
dynamics by decreasing the fraction of driver nodes. The
reason is that more balanced nodes appear in the network
with the enhancing of the positive correlation between in and
out degrees. A balanced node represents the transport process
mapping an input space into a similarly dimensional output
space. Its balanced state will be broken by the dimensionality
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FIG. 5. Effect of degree correlations. Fraction of ordinary and critical nodes in ER network [(a), (d)], EX network [(b), (e)], and SF network
[(c), (f)] as the function of the correlation coefficient R. In SF network, the exponential cutoff parameter κ = 10. The average degree for the
lines in panels (a) and (b) are, from top to bottom, 〈k〉 = 2,4,10, and reverse order for panels (d) and (e). The scale-free exponent for the lines
in panel (c) are, from top to bottom, γ = 1,3,4,5, and reverse order for panel (f). All the simulation results are obtained by averaging over 30
independent networks realizations.

reduction of its input space. Thus, a network with more
balanced nodes has better controllability properties but has
weaker robustness of control against node failure.

V. OPTIMIZING

The optimal robustness defines the optimizing situation,
where the removal of any node in a network will not
change the number of driver nodes required to maintain
full controllability. In other words, all nodes are ordinary

in the network. In order to realize the optimal robustness of
controlling edge dynamics, adding a circuit-link strategy is
proposed in this section. For each edge euv in a given network,
we add its circuit link evu. In this case, a node u in the upstream
or downstream neighbors of a removed node v will lose one
incoming edge evu and one outgoing edge euv at the same time,
and hence its category will not change. Note that, in this case,
all nodes are balanced. However, there are two directed edges
with opposite directions between any pair of connected nodes,
which is fundamentally different from a common network

addm addm addm
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ct
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 n
od
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od
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redunant
critical
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2.5γ =
10κ =
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FIG. 6. Optimizing. Fraction of critical, redundant, and ordinary nodes in ER network (a), EX network (b), and SF network (c) as the
function of the proportion of added edges madd. The lines are, from top to bottom, the fraction of ordinary, redundant, and critical nodes. All
the simulation results are obtained by averaging over 30 independent network realizations.
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with the strongest positive correlation between in and out
degrees.

The empirical evidence of the circuit-link strategy is
provided in Fig. 6. We show the fractions of the three
categories of nodes in model networks as the function of the
proportion of added edges madd = Madd/M . One can see that
the fraction of the ordinary nodes increases monotonously
with the increase of madd. The simulation results indicate that
the circuit-link strategy can effectively enhance the control
robustness. To some extent, the circuit-link strategy could take
a guiding role in optimizing the control robustness against node
failure.

VI. SUMMARY

By classifying each node according to the change in the
number of driver nodes when the node and its links are
removed, we quantified the robustness of controlling edge
dynamics in networks against node failure. To be specific,
a network with more ordinary nodes has higher degree of
robustness against changes in network structure due to random
node failure. Based on the simulation and analysis results in

model and real-world networks, we found that the percentages
of the three types of nodes are mainly related to the degree
distribution of networks. In other words, the robustness of
controlling edge dynamics is, to a great extent, encoded by
the degree distribution of networks. The results deepen our
understanding of the robustness of controlling edge dynamics
in networks.
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APPENDIX: REAL-WORLD NETWORKS

The details of the real-world networks we have studied are
presented in Table I.

TABLE I. Summary of the real-world networks analyzed in the paper. For each network, we show the number of nodes N , the number of
edges M , the fraction of critical nodes ncrit, the fraction of ordinary nodes nord, and the fraction of redundant nodes nred.

Type No. Name N M ncrit nord nred

Regulatory 1 Ownership-USCorp [28] 8497 6726 0.002 0.790 0.208
2 TRN-EC-2 [24] 423 578 0.007 0.695 0.298
3 TRN-Yeast-1 [29] 4684 15 451 0.001 0.944 0.055
4 TRN-Yeast-2 [24] 688 1079 0.001 0.781 0.218

Trust 5 Prison inmate [30,31] 67 182 0.060 0.567 0.373
6 WikiVote [32] 7115 1 03 689 0.004 0.709 0.287

Food Web 7 St. Marks [33] 45 224 0 0.289 0.711
8 Seagrass [34] 49 226 0.041 0.347 0.612
9 Grassland [35] 88 137 0.045 0.625 0.330

10 Ythan [35] 135 601 0.022 0.496 0.482
11 Silwood [36] 154 370 0.006 0.799 0.195
12 Little Rock [37] 183 2494 0.082 0.317 0.601

Electronic circuits 13 S208a [24] 122 189 0.057 0.197 0.746
14 s420a [24] 252 399 0.052 0.198 0.750
15 s838a [24] 512 819 0.049 0.207 0.744

Neuronal 16 C. elegans [38] 297 2359 0.027 0.300 0.673

Citation 17 Small World [39] 233 1988 0.017 0.691 0.292
18 SciMet [39] 2729 10 416 0.034 0.572 0.394
19 Kohonen [40] 3772 12 731 0.025 0.684 0.291

World Wide Web 20 Political blogs [41] 1224 19 090 0.016 0.327 0.657

Internet 21 p2p-1 [42,43] 10 876 39 994 0.023 0.673 0.304
22 p2p-2 [42,43] 8846 31 839 0.013 0.657 0.330
23 p2p-3 [42,43] 8717 31 525 0.013 0.655 0.332

Organizational 24 Freeman-1 [44] 34 695 0.206 0.441 0.353
25 Consulting [45] 46 879 0.087 0.413 0.500

Language 26 English words [46] 7381 46 281 0.106 0.712 0.182
27 French words [46] 8325 24 295 0.139 0.704 0.157

Transportation 28 USair97 [47] 332 2126 0.069 0.545 0.386
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